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A. General Perspective (1) Coee

Question 4:

» State of hyperspectral sensor technology for
satellite applications (LEO, GEO orbits)?

» Mature, relatively low risk (with some imaging
FTS refinements needing careful demonstration)

> |Is there a role for GHG measurements in GEO?

» A key role— UW Geo Atmospheric Profiler (GAP) even
identified as GEO component of original EOS concept

» Many questions about Minimal system for GEO

» With the right program model, GEO systems are
affordable and the benefit-to-cost ratio is large
(Minimal as defined for HES instrument or products
would sacrifice performance by not really save much)
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Common Operational Requirements:

» Spectral Resolution Exceeding ~1 cm’

» Vertical resolution, Separation of contributions from different
gases, Atmospheric spectral calibration

» Broad-Band Spectral Coverage
» Needed to capture information content (overall S/N)
» Spectral Stability/Knowledge ~1 ppm

» Even small shifts at moderate resolution create significant
effective radiance errors

» Spectral Consistency

> It should be possible to put spectra from different instruments
on a common scale (requires Nyquist spectral sampling)--
avoids subtle differences from spectral property differences and
allows product combining and common processing
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Comments on Organizational Structure:

» NASA and NOAA need to be close partners

» Technologies for new operational systems should be proven
by NASA in response to NOAA needs.

» NRC Decadal Survey should cover future Operational needs
as thoroughly as new Science Missions

» Satisfying NOAA operational needs should be a NASA priority

» Flaw in 2007 DS implementation, exacerbated by unfortunate
timing of operational plan changes (e.g. GIFTS)

» New procurement strategies for operational systems seem
to be needed to constrain costs

» Need a process that incentivizes timely development and
implementation of new systems

» Example is commercial data sale approach where Mission
investors want return as soon as possible and products need
to be good to succeed (Dave Crain, Q 15 Talk 12)



B. Future LEO: Advanced CrIS

for JPSS-Next SSEC
Supporting new operational Goals beyond JPSS

» Higher spatial resolution and near-contiguous foot prints

> Improved T & WV fields from better cloud avoidance

> Better surface & near-surface T, WV by resolving unique
surface properties

» Multiple along-track angle viewing

» Measure water vapor fluxes from motion of distributions
(Bill Smith’ s notion for GIFTS)

> Improved height definition from stereo clouds and WV
» Improved spectral coverage/resolution (CrlS)
» Additional trace gas information

> On-orbit calibration verification a la CLARREO

» Enhanced climate change role



Current CrlIS Instrument

CriIS

(1307 ch):
NPP/JPSS =\

Volume: <71 x80x95cm
Mass: <152 kg
Power: <124 W

Data Rate: <1.5 Mbps

from Williams, Glumb and Predina, ITT, August 2005 SPIE 8



Spectral Coverage of Advanced CrIS
Compared to IASI, CrIS, AIRS, S-HIS & NAST-I
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Instrument

0 : Interferometer Design - Exploded View
verview

8 cm diameter beam

Interferometer , Dynamic
. Beamsplitter- :
Output Housing Compensator Q;%r;nr:]z?;
ASSEIRlY Interferometer
Input Housing

Porchswing
Assembly

Metrology
Output Mirror

. Metrology
Metrology Input
Assembly DFB Laser Metrology With Mirror

Neon Spectral Calibration

CriS ;liviixs. from Williams, Glumb and Predina, ITT, August 2005 SPIE W [LLindustries; )



CrlS Utilizes Innovative Technologies

to Achieve High Performance

CrlS Sensor Features

ct®
« Large 8 cm Clear Aperture g é«e‘ecoo
» Three Spectral Bands et FLANE!
; = Mo “@N 0“0
- LWIR: 650-1095 cm AR | b’ 9

- MWIR: 1210-1750 om- & ™ 4 o
- SWIR: 2155-2550 o1 ot

» 1305 Total Spectral Cha%?nels

+ 3x3 FOVs at 14 km Diameter

* Photovoltaic Detectors in All 3 Bands

+ 4-Stage Passive Detector Cooler
* Plane-Mirror Interferometer With DA

* Internal Laser \Wavelength Calibration(guel%l;

* Deep-Cavity Internal Calibration Target

+ Extended Radiator Supports 1394a

» Passive Vibration Isolation System Allows
Robust Operation in 50 mG Environment

» Modular Construction

vibration

Volume: <71 x80x95cm . .
isolation mount

Mass: <152 kg
Power: <124 W
Data Rate: <1.5 Mbps

IGARSS Meeting September 20, 2004

Hookman, ITT \ ITT Industries
’ & Engineered for life 1 1
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Optical Bench

Electronics

Modify to improve spatial resolution and spatial sampling

from Williams, Glumb and Predina, ITT, August 2005 SPIE

ITT Industries

Engineered for life

12




B. Future LEO Summary C<EC

The CrIS sensor provides a foundation that
Is well suited to the upgrades
needed for NOAA’ s next generation
Weather, GHG monitoring, & Climate Monitoring

13



C. Advanced GEO Wx Sounder & pﬁ
Trace Gas Imaging FTS SSEC
(a la GIFTS/HES/GEO-CAPE)

New Sensor needed to meet
US Operational Goals

» Higher spatial, spectral, and temporal resolution

> Factor of 100 more space time-detail (x 2.5,y 2.5, z 3, t 5.5)
in T & WV distributions

» Hours advanced warning of serious severe storms
» Spectral resolution for Green House Gas monitoring

» GHG transport information from time domain
» GHG sensitivity increase from variable Tsurface

14



Spectral Coverage of GIFTS/IRS/HES
Compared to IASI, CrIS, AIRS, S-HIS & NAST-I
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Operational Weather Satellites
ROLE APPROACH

Meso-
scale

POES

Severe GOES
i Sounder
=14 Wx Sat.

W role
Q° =1, Severe
Horizontal Imager Wx Sat. role
/ "
can do
Vertical Sounder| ,
race gas too.
A
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GEO IR Imaging Sounder
capability is unique

Polar Sounders:
Inadequate temporal coverage

GPS: Inadequate spatial resolution and
temporal coverage

Current GEO Sounder:
Vertical resolution 2-3 times lower

ABI Imager:
Inadequate vertical resolution

GEO Microwave:
Vertical & horizontal resolution 2-3
times lower

17



45° External
Scene Mirror

¢ GIFTS Proof of Concept was successfully demonstrated in 2006 with the

Engineering Development Unit Thermal/Vacuum & Sky Viewing Tests

(expected long-poles are working well: LW detector with good sensitivity and operability, Long-lived stable
laser, mechanical cooler and cryogenic thermal design, imaging FTS radiometric integrity, plus many others)

¢ Results Demonstrate that NOAA Requirements for a Successful GOES
Imaging Spectrometer are achievable with a GIFTS Flight Model

(spatial coverage and resolution, spectral coverage, spectral calibration and Instrument line shape knowledge,
and spectral scale standardization)

18



A new option for the US

2 GeoMetWotch -~

ADVANCED, AFFORDABLE WEATHER.

¢ Privately owned commercial data provider
leveraging GIFTS/HES technology development

¢ Licensed for hyperspectral data collection
under the Remote Sensing Act of 2003
(NASA & NOAA cannot compete)

¢ Will restore critical data for severe weather
forecasting cancelled from GOES-R
at a fraction of the cost, in record time!

& This endeavor could become a really new way of
doing business for environmental satellite data

(Dave Crain, Q 15 Talk 12) 19
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\ D It is going to happen in Europe!

EUMETSAT/ESA plan for
. [EF advanced IR Sounder
R (IRS) to fly on
Ry asm— sl M eteosat 3'9 Generation
(MTG) in 2018

& EUMETSAT



China has an Advanced Sounder Program too!
Next Generation of GEO satellite FY-4

4 main instruments

* Interferometric Infrared Sounder

Multiple Channel Scanning Imager

Lightning Mapper

Solar X-EUV imaging telescope
(not available on 1st satellite)

No. Plan Launch | Design Life Status
FY-4A 2014 5 years R&D
FY-4B 2017 7 years Op.
FY-4C 2019 7 years Op.

Prototype structure of FY-4A

Jun Yang, GOES Users Conference, 4 Nov 2009
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C. Advanced GEO Wx Sounder & ’ﬁﬂ
Trace Gas Imaging FTS Summary SSEC

Technology is not limiting US progress
toward this extremely valuable asset

NOAA needs to prioritize meeting this
need in the GOES-R time frame

22



D. IR Climate Benchmark
(a la CLARREO)

A New Hyperspectral Climate Benchmark
Mission Is needed to provide:
» Unbiased spatial and temporal sampling
> 90 degree, true polar orbit
» Multiple, spaced orbits for seasonal coverage
» Broad, contiguous spectral coverage, including Far IR
» High Information Content, not calorimetry
> Intercalibration to tie POES and GEO to consistent standard
» On-orbit Verification and Testing

» Unequivocal calibration to 0.1 K 3-sigma

SSEC

23



Earth Radiation Budget, the old way

13 Oct 1959-Feb 1960 Explorer 7
The 1% meteorological satellite

s 4 instrument to observe the Earth
ﬂl'- e » Radiometer designed by
‘! | Verner Suomi & Robert Parent

TP //_

» Omni-directional spheres
» 3-color (black, white, gold)
Spectrally integrated obs continue today

NASA just in its 2" year



Introduction to CLARREO and ARI

CLARREO (Climate Absolute Radiance &
Refractivity Observatory)
a 2007 Decadal Survey Tier 1 mission

Volume 94 Number 10 October 2013

STUDENT FORECAST (CONTEST

L & INSIDE VOLCANIC PLUMES
— IR & Reflected Solar spectra coupled with GPS

occultation data offer unprecedented accuracy

to provide much higher climate change sensitivity
than existing climate records

(from total integrated IR & Solar data)

— Metrology lab on-orbit serves as “NIST in orbit” A M EAS U RE
CLARREO to Benchmark the Earth’s climate FOR MEASURES

— Analogous to marking a glacier’s current extent

CLARREO to be an Inter-calibration Standard
— GSICS (Global Space-based Inter-Cal System)

DROUGHT INPACTS MONITORING

— e.g. Greatly enhancing the value of the climate
record from high spectral resolution IR sounders
starting in 2002 (AIRS, IASI, CrlIS)

Absolute Radiance Interferometer (ARI)

- . . In-Orbit Calibration of
is an IR prototype instrument with new Climate-Change Monitoring

on-orbit verification technology ready for Wielicki et al.
CLARREO or a pathfinder mission




ARI for CLARREO Pathfinder Mission

 Vacuum Testing of CLARREO Flight Prototype

Absolute Radiance Interferometer (ARI)

has demonstrated 0.1 K 3-sigma performance of the

(1) Calibrated FTS (CFTS) and

(2) On-orbit Verification and Test System (OVTS),
bringing the full ARI system to TRL 6

The next step should leverage NASA
ESTO’s investment with a spaceborne
demonstration as a
CLARREO IR pathfinder. =
Flight on the International
Space Station (ISS) -
is being considered.

e JEM-EF EFU Site #4
¥ rom 1SS/DS/ESM Cross Mission Study



Absolute Radiance Interferometer (ARI) Prototype
with a short upgrade path to flight

Calibrated FTS

» Corner-cube interferometer
used in 4-port to avoid double
pass; Strong flight heritage

- 0.5 cm™* resolution (£1 cm OPD)

- 1.55 ym diode laser for interferogram
sample control & fringe counting

- 10 cm Csl single-substrate beamsplitter

» Fore optics designed to
- minimize polarization effects
- minimize sizes of calibration/
verification BBs & reflectivity sources
- minimize stray light by providing
effective field and aperture stops
- maximize energy throughput

» 3-50 um Spectral Coverage
- Highly linear pyroelectric detector,
all reflective aft optics: 10-50 um
- Cryo-cooler for MCT & InSb semi-

Aft Optics 1/ Aft optics 2 (MCT/InSb) conductor detectors: 3-18 um
Pyro-detector Sterling Cooler Compressor

ABB Bomem Interferometer
Modulator “Wishbone”




Absolute Radiance Interferometer (ARI) Prototype
with a short upgrade path to flight

On-orbit Verification and Test System (OVTS) Technologies

O On-orbit Absolute Radiance
Standard (OARS) cavity blackbody

using three miniature phase change
cells to establish the temperature scale
from -40, to +30 C to better than 10 mK

® On-orbit Cavity Emissivity
Module (OCEM) using Heated Halo

source allowing the FTS to measure the
broadband spectral emissivity of the
OARS to better than 0.001

©® OCEM-QCL* using a Quantum

Cascade Laser source to monitor

changes in the mono-chromatic cavity
emissivity of the OARS & Cal BB to
better than 0.001

O On-orbit Spectral Response

Module* (OSRM) QCL used to Callbrated FTS Blackbod|es (HBB & ABB)
measure the FTS instrument line shape

OVTS Sources

* QCL functions demonstrated separately



On-Orbit Verification and Test System

Calibrated Fourier Transform Spectrometer

Traditional
Approach

IR
Spectrometer

On-Orbit Absolute Ambient

Radiance Standard Blackbody
(OARS, with wide
Temperature range)

OVTS Provides On-Orbit, End-to-End Calibration
Verification & Testing Traceable to Recognized S| Standards




On-orbit Absolute Radiance Standard OARS

Assembly Diagram

Heated Halo Cavity  Inner Shield
& Halo Insulator & Isolator



Temperature Scale Established to < 10 mK on-orbit
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Heated Halo Concept

BIackbodAy Cavity

_Heatled Halo

R. . =€*B(T;;)+(1-¢)°

Scene
N J N~

Ry ackgrouna (£=fractional view to Halo)
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:F.B(THalo)-l_(l_F).B(T;oom)]

_

~

S

Radiance emitted from BB Background Radiance Reflected from BB

Riene (1) = Bl T35 (1)]
1 —e.(t — scene BB
< EV ( )>t <Rbackground (t) — B[TBB (t)] >t



Blackbody Emissivity Measured to < 0.001 on-orbit

3-0 emissivity of 0.0006
, Wb uncertainty indicated by
0.999 ety Lo - : A i dashed lines applied to
0.998 ‘ o e model

1

0.997

Good agreement with

0.996 —— Halo G2 NIST measurements
| Halo G3 bench MCT

0.995 . ——Halo G3 bench DTGS

—— Halo G3 vac MCT Far IR tests with
—Halo G3 vac DTGS

Graphene in Z306 —— Model I Graphene in Z306
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Brightness Temperature Accuracy Verified to < 0.1 K
(CFTS calibrated - OARS verification)

Correction of field stop problem removes this error Error bars only include statistical error in measurement

ARI Calibration Verification Summary, Measured - Predicted Residual BT (Rolling Window Cal)
I I
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Pathfinder Mission Offers Summary of recent Inter-calibrations
Valuable On-orbit Standard 04 e726820mt | fio s308a0emt ]
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ARI Accuracy Offers Substantially
Global Climate Change

Achieving Climate Change Absolute Accuracy in Orbit,

Global Near Surface Air Temperature
\ \ Calibration Accuracy (95% Confidence)
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Summary of ARI Status

CLARREO: Efforts of the NASA Science Definition Team have
documented compelling science and societal benefits from

Benchmarking the Climate State and Inter-calibrating other
Satellite Sensors (Wielicki, et al., 2013)

CLARREO IR Flight Prototype, ARI: Recent UW Vacuum
Testing combined with prior UW/Harvard IIP technology
developments and test results demonstrate capability to
meet CLARREQO mission performance requirements

ARI Technical Readiness: NASA Earth Science Technolog
Office (ESTO) has assigned a Technical Readiness Level of 6
supporting readiness for a flight mission

International Space station: ISS offers an attractive and
economical avenue to a CLARREO pathfinder mission,
especially given the recent ISS lifetime extension until 2024

CLARREO pathfinder on ISS: Would provide economical risk
reduction for the full CLARREO mission and a chance to
improve the overall accuracy of operational environmental
satellite capabilities and leverage them to start a global
benchmark record




D. IR Climate Benchmark Summary%
(a la CLARREO) SSEC

Climate Benchmark Missions are now
technologically viable and
need to be
included in operational requirements
for the foreseeable future
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